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Abstract: With the rapid development of internet technology, malicious code analysis techniques 
are also developing, resulting in huge challenges for existing malicious code analysis technology. 
The existing malicious code analysis techniques are mainly divided into static analysis methods and 
dynamic analysis methods. However static analysis methods often cannot effectively solve the 
problem of malicious code obfuscation technology, which leads to weak availability of malicious 
code under static analysis. Compared with static analysis methods, dynamic analysis methods can 
effectively overcome the confusion of malicious code. However, there are some shortcomings in the 
dynamic analysis of malicious code: (1) The execution of malicious code is strictly restricted by the 
environment, and some virtual environments cannot even trigger the execution of code; (2) Each 
execution of malicious code can only obtain a single execution path; (3) It takes a long time to 
analyze massive malicious code, and the analysis efficiency needs to be improved. With the 
continuous development of machine learning, the method of malicious code analysis based on 
machine learning has received extensive attention. However, the existing machine learning-based 
malicious code classification method often requires manual design and participation in the feature 
extraction stage. This requires prior knowledge and cannot automatically learn the characteristics of 
malicious code, which affects the classification and clustering accuracy of malicious code to a 
certain extent. Therefore, in view of the shortcomings of the current malicious code analysis method 
based on machine learning, and the theory or method of machine learning, this paper focus on an 
in-depth study on the serialization representation of malicious code, static anti-obfuscation of 
malicious code, and classification methods of malicious code. First, every binary file of the 
malicious code is processed and converted into a two-dimensional array of n*k, which is a vectored 
representation of the malicious code. Then, the appropriate machine learning methods are trained to 
explore a suitable application model for malicious code classification. 

1.  Introduction 
The continuous innovation of Internet technology has promoted the development of malicious 

code. Among the well-known malicious codes, Trojan horses, viruses, worms and other malicious 
codes are the most widely spread, causing immeasurable losses to individuals, enterprises and even 
the government. According to Tencent security 2017 Internet security report, in 2017 alone, the 
number of PC viruses intercepted nearly 3 billion times, the number of new viruses increased by 8.6% 
compared to 2016, the first decline in six years. The ransom-like virus is exploding. In 2017 the 
total number of extortion ransomosis samples reached 6.6 million. Moreover in China alone, there 
were two large-scale spreads. Nearly 5 millions computer users were attacked by the virus. 
Compared with the PC, the situation of the mobile terminal is much better but not optimistic. In 
2017 alone, the Android virus was detected 1.24 billion times, the new prion was 15.45 million, and 
the number of infected users exceeded 188 million.  

Looking at the impact of malicious code on society, for individuals, the invasion of malicious 
code can lead to personal privacy exposed to the open internet environment; for corporate, 
commercial secrets, especially outside the core technology, the leakage will greatly reduce the 
competitiveness of enterprises and thus have a negative impact on the development of enterprises. 
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For the country, in the context of the information age, the information security plays an increasingly 
important role. It has become an important part of the national development strategy. Therefore, it is 
very practical to study more effective malicious code detection technology.  

2.  Related work 
In the 1980sas the first virus in the true sense, the Apple II [1,2]was born. Since then, the war of 

malicious code detection and anti-detection has been kicked off. Many scholars have begun to 
invest a lot of energy into the research of malicious code classification technology. In the study, the 
existing malicious code analysis techniques can be divided into static analysis and dynamic analysis. 
Static analysis technology can be applied to malicious code represented by different language levels, 
mainly divided into feature code based detection methods and behavior based analysis methods. 
Dynamic analysis technology mainly implements malicious code, and analysts can easily capture 
the behavior characteristics of malicious code (for example, file operations, network 
communication traces, etc.). These behavioral features will help malicious code analysts understand 
the properties of malicious code and then classify the malicious code. 

Malicious code classification technology based on static analysis. In the 1990s, as an efficient 
traditional static analysis method, a code-based malicious code detection method was proposed [3]. 
This method is widely used to detect known malicious code, and its disadvantage is that it cannot 
effectively deal with malicious code variants and unknown malicious code. Since then, the 
researchers have improved this method, and proposed a new method to deal with unknown 
malicious code and malicious code variants [4]. It’s basic idea is to calculate the similarity between 
known malicious code and suspicious code, but its detection effect is still not ideal. Ashish et al. [5] 
proposed a simple, fast, and scalable method for identifying malware and cleaning software based 
on Windows PE file characteristics, using suspicious number of sections and frequency of function 
calls. Alazab et al. [6] proposed and evaluated a new method for detecting and classifying zero-day 
malware using multiple data mining techniques based on the frequency of Windows API calls, with 
high accuracy and efficiency. In 2011, Nataraj et al. [7] proposed an image-based malware 
visualization processing method that uses commonly image feature descriptors to describe 
malicious code behavior characteristics. However, such methods do not extract the characteristics of 
anti-aliasing malware. In 2015, Qian Yucun et al. [8] proposed a malicious code homology analysis 
and clustering method based on static analysis according to malicious code behavior characteristics. 
This method uses Jaccard coefficient to characterize malicious code control flow chart and the 
similarity of graph node instruction set. The description of the order information of the sequence of 
malicious code behaviors has been lost to some extent. Lee et al. [9] proposed to extract the 
malicious code API call sequence based on static analysis and construct a control flow chart based 
on the extracted sequence information, but the method is susceptible to packing or code confusion.  

Malicious code classification technology based on dynamic analysis. M. Bailey et al. [10] 
proposed clustering of malicious code by analyzing malicious code behavior reports, the downside 
of which is the lack of external information to guide data analysis. Fredrikson [14], Dai J [15] and 
others proposed to obtain a malicious code behavior flow by dynamically tracking the API call 
sequence. The dynamic execution of the malicious code monitoring API call sequence can 
effectively eliminate the influence of the malicious code obfuscation technology, but is vulnerable 
to the execution environment, the execution path is single, and in the face of massive malicious 
code, its efficiency needs to be improved. Kolter et al. [11] classified malicious code based on 
malicious code behavior, and refined the classification results and studied the semantics of 
malicious code. Since then, the researchers have proposed a number of malicious code analysis and 
classification methods based on dynamic extraction API calls. Mohammad et al. [16] tested on the 
system call log of real malware, combining the powerful statistical pattern analysis capabilities of 
the Hidden Markov Model with the proven system call capacity as a distinguishing dynamic feature 
against malware confusion. Tian et al. [12] proposed a method of monitoring system API calls and 
counting the number of API calls and the frequency of specific API calls. Although this method can 
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match the similarity of the same type of malicious code to some extent, it does not consider the 
problem of malicious code behavior sequences. Therefore malicious code writers can easily evade 
analysis by inserting or removing redundant API calls. Qiao Yanchen et al. [13] automated the 
determination of malicious code homology by obtaining the API calling habits of malicious code, 
which has a high clustering accuracy. For the processing of API call sequences, the method of 
malicious code detection based on the common function call sequence pattern effectively improves 
the detection rate of unknown malicious code.  

However, with the continuous development of malicious code back analysis technology, the 
existing malicious code analysis technology faces enormous challenges: existing static analysis 
methods often cannot effectively solve the impact of malicious code obfuscation technology, 
resulting in the weak usability of malicious code under static analysis; compared with the static 
analysis method, although the dynamic analysis method can effectively overcome the problem of 
malicious code confusion, the dynamic analysis of malicious code also has the disadvantages of 
being vulnerable to the environment, obtaining only a single path for each execution, and low 
efficiency of analysis. With the continuous development of machine learning, malicious code 
analysis methods based on machine learning have received extensive attention, but traditional 
machine learning models often require manual design and participation in the feature extraction 
stage. This requires complete prior knowledge and cannot automatically learn the characteristics of 
malicious code, which to some extent affect the classification and clustering accuracy of malicious 
code. In view of this, this paper focuses on the shortcomings of existing malicious code analysis 
methods. Based on the theory and method of machine learning, firstly, the binary file of malicious 
code is preprocessed and converted into a two-dimensional array of n*k, i.e. vectored malicious 
code, then select the appropriate machine learning method to train it, and explore the application 
model suitable for malicious code classification. 

3.  Machine learning based malicious code classification technology 
The machine learning-based malicious code classification is designed to extract effective 

features from malicious code, and conduct supervised learning and training based on malicious code 
features to achieve malicious code homology determination. This paper selects three representative 
algorithms in the field of machine learning: CNN (Convolutional Neural Network), SVM (Support 
Vector Machines), and GRU-SVM (Gated Recurrent Units-Support Vector Machines) are used for 
malicious code classification. By comparing the results of the three models under various evaluation 
indicators, a model more suitable for malicious code classification is explored. 

The implementation flow of each model in this paper is shown in Figure 1: (1) First, the 
malicious code is preprocessed to obtain vectored malicious code; (2) The vectored malicious code 
is respectively brought into three classification models to train the classification model; (3) Based 
on different evaluation indicators, compare the three classification models and select a model more 
suitable for malicious code classification. 

Pretreatment
Vectorized 
malicious 

code

Classification 
model

Classification 
results and 
evaluation 
indicators

Explore the 
proper 

classification 
model  

Fig. 1 Model implementation flow chart 

3.1.  Pretreatment. 
Since the static analysis method for malicious code generally analyzes the text of malicious code, 

dynamic analysis generally analyzes the characteristics of the calling sequence of malicious code, 
and the malicious code binary file includes the text features and the serialized features of the 
malicious code. Therefore, to some extent, the analysis of malicious code binary files can extract 
valid static features and dynamic features in malicious code. In view of this, this article first 
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preprocesses the malicious code binary. The malicious code data set used in this paper is shown in 
Table 1, consisting of 25 different types of malicious code. 

The malicious code data set structure matrixing the binary code of the malicious code executable 
file is based on the malicious code executable file, and is also a key link to solve the problem of 
malicious code confusion. Specifically, matrixing a malicious code executable is to represent the 
entire malicious code executable as a n*k two-dimensional array. Therefore, the general process of 
preprocessing is shown in Figure 2: First, read the binary code of the executable file, convert each 
8-bit binary code into a decimal number as an element in a two-dimensional array, and the range of 
elements in a two-dimensional array is 0-255. Then, each row of the matrix has k elements, that is, 
k 8-bit binary codes are converted into k real numbers, and the binary code is continuously 
converted until the complete malicious code is obtained, and finally the data representation of the 
whole malicious code is similar to a grayscale image. The data used in this paper is transformed into 
a 32*32-dimensional array by the above method. 

Table.1. Malicious code Data Set  

Family 
name Adialer.C Agent.FYI Allaple.A Allaple.L Alueron.gen

!J Autorun.K 

NO 122 116 2949 1591 198 106 
Family 
name C2LOP.P C2LOP.gen!g Dialplatform.

B 
Dontovo.

A Fakerean Instantaccess 

NO 146 200 177 162 381 431 
Family 
name 

Lolyda.A
A1 Lolyda.AA2 Lolyda.AA3 Lolyda.A

T Malex.gen!J Obfuscator.A
D 

NO 213 184 123 159 136 142 
Family 
name Rbot!gen Skintrim.N Swizzor.gen!

E 
Swizzor.g

en!I VB.AT Wintrim.BX 

NO 158 80 128 132 408 97 
Family 
name Yuner.A      

NO 800      
 

Binary 
malicious code 
010011100...

8-bit cutting
8-bit vector 
to grayscale

 
Fig. 2 Pretreatment process 

3.2.  CNN-based malicious code classification algorithm. 
The malicious code executable file matrix is input, wherein the malicious code executable file 

includes confusing samples, and the CNN model automatically extracts features in the malicious 
code executable file matrix, thereby avoiding the influence of malicious code confusion on manual 
analysis. Static classification is achieved by supervised learning to classify malicious code. The 
CNN classification model is shown in Figure 3: 
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Fig. 3 CNN model 

Convolution operations are performed on the original malicious code matrix using convolution 
kernels of three sizes in the convolutional layer. The width of the convolution kernel filter_size is 
set to 3, 4, and 5 respectively. The convolution kernels of each size have 200 convolution kernels 
with different initial weights. In the convolution process, set all convolution kernel lengths to k. 
Finally, a feature vector of (n-filter_size+1) dimension is obtained. The convolutional layer 
calculation formula is shown in equations (1) and (2): 

∑ ∑+

= =
=

2

1
)*(t

ti

k

j ijijt wsh                           (1) 

)(V bHf +=                               (2) 

Where k is the convolution kernel length and is also the number of malicious code matrix 
columns; n is the number of malicious code matrix rows; sij is the element in the malicious code 
matrix; wij is the convolution kernel parameter value; H is the vector obtained by the convolution 
operation, ht represents the tth element of H, f represents a nonlinear activation function, b 
represents an offset vector, and V represents the acquired feature vector. 

After convolution kernel convolution with length k and width filter_size, the real matrix n*k of 
the original malicious code matrix is transformed into 200 feature vectors of length (n-filter_size+1). 
The model is connected to the pooling layer after the convolutional layer. Using the 1-max pooling 
layer, for the 600 different feature vectors obtained by the convolutional layer, the maximum value 
is selected in each feature vector to represent the entire vector to form a new 600-dimensional 
feature vector. The pooling layer calculation process is as shown in the formula (3), where 

)1efilter_siz,...,2,1;200,...,2,1(v +−== njij
i  represents the j-th element value in the i-th 

(n-filter_size+1)-dimensional feature vector obtained by the convolution operation, and
)200,...,2,1(x =ii represents the real value obtained by the feature vector mapping after the pooling 

operation: 
j

inj
vx

1efilter_siz1i max
+−≤≤

=                            (3) 

The model is connected to the fully connected layer after the pooling layer. The number of 
implicit neural nodes in the fully connected layer is m, that is, the number of categories of malicious 
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code family classification. The Softmax classifier is used as the output of the entire CNN 
classification model to calculate the category probability.  

3.3.  SVM-based malicious code classification algorithm. 
Support Vector Machine (SVM) was proposed in the 1990s. It is a machine learning method 

based on VC dimension theory and structural risk minimization. When the samples involved in 
training are limited, it seeks the best compromise between the learning ability and complexity of the 
model, so that the model has the best generalization ability. In the case of fewer training samples, 
the SVM seeks to find the optimal hyperplane to separate the different categories. At the same time, 
when solving the nonlinear problem, it converts the nonlinear problem into a linear problem by 
introducing a kernel function and then processes it. 

The SVM algorithm was originally designed for the binary classification problem. When dealing 
with multiple types of problems, it is necessary to construct a suitable multi-class classifier. There 
are two main methods for constructing SVM multi-class classifiers: one-to-many method and 
one-to-one method. This paper mainly uses a one-to-many method to classify malicious code. In the 
training, the samples of a certain category are classified into one class, and the other remaining 
samples are classified into another class, so that the samples of k categories construct k trained 
SVM models. When classifying, the unknown sample is classified as the one with the largest 
classification function value. The objective function of the SVM is shown in equation (4): 

∑
=

+
N

i
i

T Cww
1b,w, 2

1min ξ
ξ                             (4) 

Nibxwyts iii
T

i ,...,1,0,1)(.. =≥−≥+ xx                       

Where w is the weight coefficient vector and b is a constant. C is a penalty coefficient, which 
controls the degree of punishment for misclassified samples, and plays a role in balancing model 
complexity and loss error. iξ is the relaxation factor, which is used to adjust the number of 
misclassified samples that exist in the hyperplane to allow for classification. 

3.4.  GRU-SVM-based malicious code classification algorithm. 
GRU is a variant of LSTM, which in turn is a variant of RNN. RNN is often used for text 

analysis, which can model sequence data, but does not analyze long-dependent text very well. 
LSTM can solve this defect of RNN well. As a variant of LSTM, GRU simplifies nearly one-third 
of the parameters on the basis of LSTM, synthesizing the LSTM's forgotten and input gates into a 
single update gate, as well as mixing cell states and hidden states. Although the GRU model is 
simpler than the standard LSTM model, the effect is comparable to LSTM. The structure of the 
GRU is shown in Figure 4 below. tz  and tr  in Figure 4 represent the update gate and the reset 
gate, respectively. The update gate is used to control the degree to which the status information of 
the previous moment is brought into the current state. The larger the value of the update gate is, the 
more the status information is brought in at the previous moment. The reset gate controls how much 
information is written to the current candidate set th~  in the previous state, the smaller the reset gate, 
the less the information of the previous state is written. Equation (5) to (8) shows the calculation of 

tz , tr , th~  and th , respectively. 
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Fig. 4 GRU structure diagram 
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1−th  represents the output of the previous neuron, tx  represents the input of the current neuron, 
and zW  represents the weight of the gate. In the GRU-SVM model, the data th  obtained after 
GRU processing is no longer using the traditional softmax classifier, but is classified by the SVM to 
obtain the classification result. 

4.  Experiment and analysis 
4.1.  Experiment environment. 

The experimental data set was taken from the Malimg data set created by Nataraj et al. The data 
set consists of 32*32 matrices, a total of 25 categories. Experimental environment: win8 operating 
system, AMD cpu, 8g memory; PyCharm + python 3.6, using tensorflow 1.12 framework to build 
the model, using tensorboard to visualize the results. 

4.2.  Analysis of results. 
In the process of training and verifying of malicious code classification model, this paper uses 

classification accuracy rate accuracy, cross entropy loss function value loss, precision, recall,  
F1-score, confusion matrix, change rate index ROC curve and fuzzy evaluation index AUC as 
evaluation criteria for the model. 

4.3.  Classification accuracy rate accuracy.  
The classification accuracy rate is used to judge the correct rate of the model classification of 

malicious code, as shown in formula (9), Where N is the total number of malicious samples and Nt 
is the number of malicious code samples correctly classified by the classification model: 

N
Naccuracy t=                                (9) 

4.4.  Cross entropy loss function value loss. 
The cross entropy loss function is used to describe the error function between the actual output 

calculated by the model and the standard output. The smaller the function value, the closer the 
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actual output value is to the standard output value. The cross entropy loss function is shown in 
equation (10): 
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Note l{true value expression}=1, l{false value expression}=0. m is the number of samples; x(i) 
represents the input vector of the ith sample; ) x,…, x,x(1, = (i)

p
(i)

2
(i)

1
(i)x  is the p+1-dimensional 

vector; y(i) represents the value of the corresponding category of the ith sample, and k is the total 
number of sample categories. 

4.5.  Precision. 
The accuracy rate indicates the ratio of the number of correct predictions to the total number of 

samples in the prediction results. For this article, the accuracy rate estimates the proportion of all 
results predicted to be the correct type of malicious code, as shown in equation (11):  

)/( FPTPTP +                             (11) 

Where TP (True Positive) represents the true value is true and the predicted value is true; FN 
(False Negative) represents the true value is false, the predicted value is true; FP (False Positive) 
represents the true value is true, and the predicted value is false; TN (True Negative) represents the 
true value is false, and the predicted value is false. 

4.6.  Recall.  
The recall rate indicates how many types of samples have been predicted correctly. For this 

article, in a malicious code type, the recall rate represents the ratio of the number of samples that are 
predicted to be correct to the samples that are assigned to this class. As shown in formula (12): 

)/( FNTPTP +                              (12) 

4.7.  F1-score. 
Both the accuracy rate and the recall rate are often contradictory, and the F1 score is the 

harmonic average of the two, combining the results of both. As shown in formula (13): 

)2/(21 FPFNTPTPF ++=                        (13) 

4.8.  Confusion matrix. 
The confusion matrix is calculated by comparing the position and classification of each measured 

pixel with the corresponding position and classification in the classified image. The confusion 
matrix can be used to characterize the accuracy of a classifier. 

4.9.  ROC curve. 
ROC focuses on two indicators: true positive rate (TPR = TP / [TP + FN] ) and false positive 

rate (FPR = FP / [FP + TN] ). Intuitively, TPR stands for the probability that the positive case can 
be divided correctly, and FPR stands for the probability that the negative case is divided into 
positive cases. In ROC space, the abscissa of each point is FPR and the ordinate is TPR, which 
depicts the trader's trade-off between TP (true positive) and FP (wrong positive). 

4.10.  AUC. 
The value of AUC is the size of the area under the ROC curve. Typically, the AUC value is 

between 0.5 and 1.0, with a larger AUC representing better performance. 
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Table.2. Different models’ comparative results under various evaluation indicators 

 
                Models 
Indicators     

CNN SVM GRU-SVM 

accuracy 0.7421 0.9151 0.95 
loss 0.7221 0.3743 0.12 
AUC 0.97 0.96 0.96 

 
Table.3. Deep Learning Using CNN for Malware Classification Report 

 precision recall F1-score 
Adialer.C 0.95 0.99 0.97 
Agent.FYI 0.99 1.00 1.00 
Allaple.A 0.75 0.71 0.73 
Allaple.L 0.60 0.85 0.71 

Alueron.gen!J 0.92 0.91 0.92 
Autorun.K 1.00 1.00 1.00 
C2LOP.P 0.30 0.41 0.35 

C2LOP.gen!g 0.35 0.29 0.32 
Dialplatform.B 1.00 0.99 0.99 

Dontovo.A 1.00 1.00 1.00 
Fakerean 0.99 0.85 0.92 

Instantaccess 0.99 0.99 0.99 
Lolyda.AA1 0.97 0.91 0.94 
Lolyda.AA2 1.00 0.97 0.99 
Lolyda.AA3 1.00 0.64 0.78 
Lolyda.AT 0.61 0.50 0.55 

Malex.gen!J 0.00 0.00 0.00 
Obfuscator.AD 1.00 1.00 1.00 

Rbot!gen 0.76 0.76 0.76 
Skintrim.N 0.92 0.82 0.87 

Swizzor.gen!E 0.41 0.17 0.24 
Swizzor.gen!I 0.54 0.15 0.24 

VB.AT 0.92 0.99 0.95 
Wintrim.BX 0.00 0.00 0.00 

Yuner.A 1.00 1.00 1.00 
Avg/total 0.77 0.78 0.77 

 
Table.4. Deep Learning Using SVM for Malware Classification Classification Report  

 precision recall F1-score 
Adialer.C 0.95 1.00 0.97 
Agent.FYI 0.97 0.97 0.97 
Allaple.A 0.90 0.87 0.89 
Allaple.L 0.84 0.87 0.85 

Alueron.gen!J 0.98 0.96 0.97 
Autorun.K 0.98 1.00 0.99 
C2LOP.P 0.75 0.70 0.73 

C2LOP.gen!g 0.80 0.72 0.76 
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Dialplatform.B 0.97 1.00 0.99 
Dontovo.A 1.00 1.00 1.00 
Fakerean 0.98 0.98 0.98 

Instantaccess 0.97 1.00 0.98 
Lolyda.AA1 0.97 0.97 0.97 
Lolyda.AA2 0.99 0.99 0.99 
Lolyda.AA3 0.95 0.98 0.96 
Lolyda.AT 0.90 0.92 0.91 

Malex.gen!J 0.77 0.82 0.80 
Obfuscator.AD 0.91 1.00 0.95 

Rbot!gen 0.96 0.76 0.96 
Skintrim.N 0.89 0.96 0.92 

Swizzor.gen!E 0.72 0.73 0.72 
Swizzor.gen!I 0.78 0.71 0.75 

VB.AT 0.96 0.96 0.96 
Wintrim.BX 0.95 0.92 0.93 

Yuner.A 1.00 1.00 1.00 
Avg/total 0.91 0.91 0.91 

 
Table 2 shows the results of the malicious code classification method based on the three models 

under different indicators such as classification accuracy rate, loss function value loss and fuzzy 
evaluation index AUC. Table 3, Table 4 and Table 5 respectively show the effectiveness of the 
malicious code classification method based on different models under the precision, recall and 
F1-score indicators: the precision of CNN is about 0.77, and the recall is about 0.78,the F1-score is 
about 0.77; the SVM has a precision of about 0.91, the recall is about 0.91, and the F1-score is 
about 0.91; the GRU-SVM model has an precision of about 0.95, a recall of about 0.92, and a 
F1-score of about 0.93.In summary, after analyzing Table 2, Table 3, Table 4 and Table 5, we can 
know that among the three different classification algorithms the GRU-SVM model performs best 
in malicious code classification that not only its loss value is low, the precision and the recall and 
F1-score also perform best in the three classification algorithms. 

Table.5. Deep Learning Using GRU - SVM for Malware Classification Report  

 precision recall F1-score 
Adialer.C 0.25 0.99 0.40 
Agent.FYI 0.99 0.98 0.99 
Allaple.A 0.93 0.94 0.93 
Allaple.L 0.94 0.87 0.90 

Alueron.gen!J 0.99 0.95 0.97 
Autorun.K 0.99 0.82 0.90 
C2LOP.P 0.96 0.82 0.88 

C2LOP.gen!g 0.97 0.82 0.89 
Dialplatform.B 0.99 0.97 0.98 

Dontovo.A 1.00 0.98 0.99 
Fakerean 0.99 0.95 0.97 

Instantaccess 1.00 0.98 0.99 
Lolyda.AA1 0.98 0.94 0.96 
Lolyda.AA2 0.99 0.94 0.97 
Lolyda.AA3 1.00 0.97 0.99 
Lolyda.AT 0.99 0.94 0.96 

Malex.gen!J 0.98 0.72 0.83 
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Obfuscator.AD 1.00 0.98 0.99 
Rbot!gen 0.99 0.93 0.96 

Skintrim.N 1.00 0.93 0.96 
Swizzor.gen!E 0.96 0.80 0.87 
Swizzor.gen!I 0.97 0.79 0.87 

VB.AT 0.99 0.97 0.98 
Wintrim.BX 0.99 0.83 0.90 

Yuner.A 0.98 0.99 0.98 
Avg/total 0.95 0.92 0.93 

 
 

 
Fig. 5 CNN performance in the confusion matrix    Fig. 6 SVM performance in the confusion 

 Matrix              

  
Fig. 7 GRU-SVM performance in the confusion matrix  Fig. 8 ROC curve and AUC of CNN and  

 SVM and GRU-SVM       
Figure 5, Figure 6, and Figure 7 show the performance of each classification algorithm in the 

confusion matrix. As can be seen from Table 3 and Figure 5, CNN does not ideally classify these 
malicious codes such as Allaple. A, Allaple. L, Lolyda. AA3, Lolyda. AT, C2LOP.PC2LOP. gen!g, 
Swizzor. gen!E, Swizzor.gen!I, etc. After analyzing the big categories they belong to, we know that 
Allaple.A and Allaple.L belong to one category and Lolyda.AA3 and Lolyda.AT belong to the same 
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category, similarly, C2LOP.P and C2LOP.gen!g, Swizzor.gen!E and Swizzor.gen!I belong to the 
same class. It can be seen that CNN is not ideal for classifying malicious codes that belong to a 
same large class. Table 4 and Figure 6 shows that compared with CNN, SVM greatly improves the 
classification effect of malicious code belonging to the same category. For example, for the 
classification effect of Allaple. A, AllapleL, CNN can only reach between 0.30 and 0.40, while 
SVM can reach between 0.70 and 0.80. It can be seen that SVM has better classification effect than 
CNN. It can be seen from Table 5 and Figure 7 that compared with SVM, GRU-SVM has better 
classification effect. In addition to inheriting SVM's advantage of better effect on classifying 
malicious code belonging to a large class, GRU-SVM's classification accuracy rate accuracy and 
other evaluation indicators are higher than SVM. It can be seen that GRU-SVM can better extract 
the characteristics of vectored malicious code binary files. 

As can be seen from Figure 8, the AUC performance of the SVM is not as good as that of CNN 
and GRU-SVM, so we can know that the SVM classification performance is not ideal compared to 
the other two classifiers. The three ROC curves show that the performance of the three classifiers is 
similar, but the performance of CNN is relatively less than ideal. Combining the performance of the 
three classifiers in ROC and AUC, it can be seen that GRU-SVM performs best. 

5.  Summary 
This paper implements three models CNN, SVM and GRU-SVM to classify malicious code. 

Taking the binary code matrix of the malicious code executable file as input, the CNN model can 
automatically extract the malicious code features and semantics, effectively solve the malicious 
code confusion problem in static analysis, and implement the family classification of malicious 
code according to the automatically extracted feature vector, obtain new feature vectors through 
convolutional layer and pooling layer, and train the model through self-feedback and adjustment of 
the neural network to improve classification. The GRU model is generally used for long text 
processing. It can retain important features through various Gates to ensure that it will not be lost 
when long-term propagation. Therefore, GRU is similar to CNN and can effectively solve the 
confusion problem in the static analysis of malicious code. At the same time, the GRU has the 
feature of processing long texts, and the GRU can solve the time serialization feature of the 
malicious code binary files that the CNN cannot handle. Therefore, in the feature extraction stage of 
the malicious code binary file, the GRU can better extract the binary code’s important features. It 
can be seen from the experimental evaluation indicators that SVM can analyze the important 
features of malicious code more than CNN, and thus obtain better classification results. GRU-SVM 
combines the characteristics of GRU and SVM, and the malicious code binary file is processed by 
the GRU, and the extracted important features are used as input of the SVM, and the data is 
classified by the SVM. From the above experimental results, it can be seen that compared with 
CNN and SVM models, GRU-SVM performs best in terms of precise, accuracy, recall , or in terms 
of confusion matrix, F1-score, AUC, etc. Therefore, among the three classification models CNN, 
SVM, and GRU-SVM, GRU-SVM is more suitable for classification of malicious code. 

Although this paper explores a malicious code classification model based on machine learning, 
but the classification accuracy of this classification model is about 96%, compared with other 
machine learning methods, there is still room for improvement. And the input to the model is just 
the result of matrixing the malicious code binary, without extracting the features of other malicious 
code as input, so there is still a lack of malicious code preprocessing, and later work will focus on 
the research of malicious code feature extraction. In addition, this paper only studies the malicious 
code classification based on CNN model, SVM model and GRU-SVM model, and has not tried 
other machine learning. The method is therefore not comprehensive enough in terms of model 
comparison. 
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